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ABSTRACT: In order to design new fatigue-resistant composites, the underlying fatigue
damage mechanisms must be characterized and the controlling microstructural prop-
erties should be identified. The fatigue-damage mechanisms of a unidirectional carbon
fiber–reinforced epoxy has been studied under tension–tension loading. A ubiquitous
form of damage was one or a few planar fiber breaks from which debonds or shear yield
zones grew in the longitudinal direction during fatigue cycling. This leads to a change
in stress profile of the neighboring fibers, and an increase in failure probability of these
fibers. The breakage of fibers in the composite is controlled by the fiber strength
distribution. The interaction between the fiber strength distribution and debond prop-
agation leading to further fiber breakage was investigated by a numerical simulation.
It was found that a wider distribution of fiber strength and a higher debond rate lead
to more distributed damage and a higher fracture toughness. Implications to fatigue life
behavior are discussed, with reference to constituent microstructure. © 2000 John Wiley
& Sons, Inc. J Appl Polym Sci 76: 457–474, 2000
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INTRODUCTION

Polymer matrix composites have gained in-
creased use in load carrying applications during
the last few decades. The most frequent failure
mode for structural materials is fatigue.1 If the
fatigue mechanisms were known together with
the controlling microstructural parameters (e.g.,
shear yield stress of the polymer matrix, fiber-
matrix interfacial fracture toughness, fiber
strength), more fatigue-resistant materials could
be designed, which would lead to lighter and more
slender composite structures. For instance, the
polymer could be synthesized in a way that would
increase its crack-growth resistance, which in

turn would suppress or inhibit fatigue degrada-
tion and eventual failure.

Composite failure, both under static and fatigue
conditions, is intrinsically localized, i.e., failure oc-
curs in the weakest volume element. In this ele-
ment, the microstructure is generally in the same
size scale as the failure inducing damage. Individ-
ual fiber breaks, debonds, bridged cracks, yielded
matrix zones, etc. may have to be considered. Since
lifetime prediction is an ultimate goal in the exten-
sion of studies of fatigue mechanisms, failure and
localized damage have to be considered. This means
that it is necessary to take the heterogeneous mi-
crostructure of the composite into account in the
analysis of fatigue-damage growth.

Simple damage scenarios that have been ex-
perimentally identified should be the first to be
modeled, which typically involve single damage
sites. Next, this can be extended to more complex
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situations with, e.g., cluster formation and coales-
cence, and volume scaling. One of the potential
benefits of microscopic modeling of fatigue degra-
dation is that judicious parametric studies can
indicate improvements in the constituent proper-
ties for microstructural tailoring and optimum
macroscopic performance when experiments are
not feasible.

For structural applications of composite mate-
rials, laminates containing unidirectional plies
are preferably used. The layup of the laminate
can be tailored to suit the applied stress state. An
almost ubiquitous ply has its fibers aligned in the
longitudinal direction (0°), i.e., in the direction of
the largest principal stress. In fatigue of multidi-
rectional laminates, the 0° ply controls the fatigue
life of the entire laminate when interpreted in
terms of applied initial strain.2–4 This is because
the 0° plies have the largest strain to failure, and
have longer fatigue lives than plies with oblique
reinforcement for a given strain amplitude.5,6

Also, damage in off-axis plies seems to have little
influence on the stress state in the 0° plies.7 Be-
cause of the relative importance of the 0° ply in
fatigue of composite laminates, only this ply will
be investigated here.

There are two main approaches to model dam-
age accumulation in unidirectional 0° composites
through the successive breakage of individual fi-
bers, depending on how the load is redistributed
among the surviving fiber segments when a fiber
is broken. These are called (1) global load sharing
and (2) local load sharing. In composites with
weak interfaces, the global load-sharing concept
can be used. It assumes that all remaining intact
fibers share the load equally in the plane of the
fiber breaks. This is locally analogous to a loose
fiber bundle with no stress transfer between con-
tiguous fibers. For polymer-matrix composites,
this is generally a poor presumption, since the
interfacial adhesion is usually fairly efficient, and
the relatively high stress-transfer ability results
in localized damage with small critical flaws at
the initiation of catastrophic failure. Instead, lo-
cal load sharing can be adopted, in which only the
neighboring fibers to a fiber break are assumed to
share the additional load according to an empiri-
cal or physical stress redistribution function. The
local load-sharing scheme becomes more detailed,
and generally mathematically more intricate, but
forms a more physical description that is more
consistent with experimental data. The local load-
sharing approach will implicitly be advocated for
the debond model in the present study. A well-

reasoned and versatile semianalytical local load-
sharing model based on the shear-lag principle
developed by Beyerlein and Phoenix8 will be used
here.

In this work, the active fatigue damage mech-
anisms have been identified in a commercial 0°
carbon fiber–reinforced epoxy by a surface-repli-
cation technique. Based on these findings, a para-
metric investigation was undertaken, where the
influence of the interaction of the observed dam-
age modes on fatigue-damage accumulation was
studied.

EXPERIMENTAL

Unidirectional carbon fiber/epoxy specimens were
fabricated with a [04]T stacking sequence of AS4/
8552 prepreg plies from Hexcel. The matrix is a
thermoplastic-modified epoxy system. The prepreg
material was autoclave-cured according to the
manufacturer’s recommendations at 180°C and 6
bar for 120 min. During the autoclave process, a
well-polished plate of stainless steel was placed
inside the vacuum bag directly on top of the re-
lease film covering the stacked prepreg plies, to
enhance the surface smoothness and to prevent
the usual texture on the upper surface of the
composite from the release fabric or surface
bleeder. As a result, more excess resin was bled
than for a conventional cure process without a
pressure plate, and a fiber volume fraction of
; 63% was obtained. The specimens were cut
with an abrasive water jet to dimensions recom-
mended by ASTM standard D3039: a 127-mm
gage length and a 12.7-mm width. Tapered end
tabs of glass weave–reinforced epoxy were bonded
to the laminates by an adhesive epoxy film cured
at 125°C for 2 h. The specimen edges were subse-
quently polished with successively finer silicon
carbide papers ending with 2400 grit. This con-
veyed edges with a glossy and scratch-free ap-
pearance.

The specimens were subjected to load-
controlled fatigue tests on an Instron 1272 ma-
chine. The longitudinal strains were registered on
a personal computer with a Sandner A10-2.5 ex-
tensometer with a gage length of 10 mm. The
closed-loop fatigue tests consisted of a sinusoidal
load with a frequency of 10 Hz. The stress ratio
was continually R 5 0.1. All tests were per-
formed at room temperature.

During the course of the fatigue, a sequence of
surface replicas were intermittently taken at the
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same position in the middle of a specimen surface.
Since longitudinal splitting tends to occur at the
edges of unidirectional coupons due principally to
fiber misalignment, the replicas were taken on
the unpolished surface across the width. A cellu-
lose acetate film was plasticized with an acetone-
based solution and thereafter pressed onto a pre-
designated position on the specimen surface for 2
min. As the solution evaporated, the polymer film
was allowed to harden. Before each replication,
the surface spot was carefully cleaned with etha-
nol and dried. The peak load was applied to the
specimen during the replication to allow the
cracks to open and render them more visible. The
replicas were taken to a maximum strain of
0.89%, which is close to the fatigue limit of this
material. After replication, a carbon coating with
a thickness of 30 to 50 nm was sputtered on the
replica samples to improve the image resolution
in the optical and scanning electron microscopes.
The development of fatigue damage was mapped
by locating a large damage site on the replica with
the highest number of elapsed cycles, and relocat-
ing the same site on the previous replicas from
the same set with a lower number of cycles. Since
the damage sites were dispersed and rare, a map
with reference points such as scratches, mis-
aligned fibers, etc. had to be drawn to relocate the
position of the fatigue damage.

Scanning electron micrographs were taken on
carbon-coated replica films in a JEOL JSM-T300
scanning electron microscope with an accelerat-
ing voltage of 20 kV. The replicas were also ex-
amined by optical microscopy with a built-in mi-
croscope of a Matzusawa MXT-a microhardness
tester.

EXPERIMENTAL RESULTS AND DISCUSSION

The macroscopic fatigue-life behavior (in terms of
fatigue-life curves) for the carbon fiber/epoxy ma-
terial is reported elsewhere.9 It showed fatigue
degradation with a sloping fatigue life curve. In
contrast, earlier carbon fiber/epoxy materials
with very high modulus fibers did not show pro-
gressive damage, and hence a horizontal fatigue-
life scatter band located at the static fiber strain
to failure.10 The fatigue sensitivity of the present
material must be due to a set of progressive fa-
tigue-damage mechanisms, which give rise to
damage propagation and eventual failure.

The surface replicas showed that the most fre-
quent type of progressive fatigue-damage mecha-
nisms was isolated single or multiple fiber breaks
from which debonds grew with an increasing
number of elapsed load cycles. Figure 1 presents a
sequence of replicas of a single fiber break with
growing debonds. In Figure 2, the debond lengths
are plotted with respect to the number of load
cycles.

Since the fibers have a distribution in strength,
or in strain to failure, some of them will break
even at low applied strains well below the average
value of the strain to failure. When a fiber sur-
rounded by intact fibers has been broken, shear
stresses are induced that can be relaxed by inter-
facial debonding, propagation of matrix cracks, or
shear yield zones along the interface. All of these
progressive mechanisms result in a stress relax-
ation of the polymer matrix next to the fiber
break, and a continuous change in the stress pro-
file of the intact neighboring fibers. Only debond-
ing will be considered in the model because of the

Figure 1 Growth of debonds from a single fiber break (fiber diameter ; 5 mm).
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apparent similarity between the effects of the dif-
ferent mechanisms, and the fact that debonding
was the most prevalent progressive mechanism.
In Figure 3, an example is shown where a shear
yield zones grew from one end of the plane of
multiple fiber breaks, whereas debonds emanated
from the other end. A third example with debonds
propagating from a site of multiple fiber break is
presented in Figure 4. However, the most preva-
lent form of observed fatigue damage was only
one fiber break from which debonds propagated.
A cluster of planar multiple fiber breaks has es-
sentially the same effect on the neighboring fibers
as a single fiber break; only the stress concentra-
tion11 and the shear stresses12 are larger.

Despite that the direction of the applied load is
parallel to the fibers, the cracks (i.e., debonds) do
not grow perpendicular to this direction, which is
customary to monolithic isotropic materials. The
degree of material anisotropy is very high for
unidirectional 0° composites. For example, the
transverse strength is significantly lower than
the tensile strength. This anisotropy leads to lon-
gitudinal growth of cracks in mode II along the
fiber–matrix interface due to low interfacial
strength and the large mismatch in elastic prop-
erties. This trend prevails for short-fiber compos-
ites also. Friedrich et al.13 tested injection-molded

short-fiber composites in fatigue, and noticed
crack propagation in the principal material direc-
tion independent of the load direction. Xian and
Choy14 tested notched carbon fiber/bismaleimide
in fatigue, and observed mode II propagation in
the fiber direction for 0° specimens. In composites
with long continuous fibers in the load direction,
debonds may initiate from the distributed fiber
breaks and propagate under fatigue. As men-
tioned previously, the growing debond continu-
ously changes the local load of the neighboring
fibers. When a weak element of an intact fiber is
overloaded, it may fail and give rise to new
debonds, etc. In this manner, fiber breaks will be
accumulated, and the material will eventually
fail, as schematically depicted in Figure 5. This
scenario can also be combined with cycle- or time-
dependent growth of a yield or creep zone in front
of the interfacial debond.15 Due to the growth of
debonds and yield zones, the final fatigue crack
will have a nonplanar fracture surface. Depend-
ing on the direction of matrix crack growth, dif-
ferent patterns of damage growth occur. If the
matrix crack grows perpendicular to the load and
fiber direction, a fiber-bridged crack may form.9

As discussed later, if the material is prone to
debonding in the longitudinal direction, there will
be nonplanar successive fiber breakage. There is
substantial experimental evidence in polymer-
matrix composites of debonding in fatigue.16–19

The evolution of stress transfer during fatigue
debond growth and the resulting successive
breakage of fibers are key mechanisms in poly-
mer-matrix composites that are prone to debond-
ing. In order to model this behavior and ulti-
mately predict fatigue life, the fundamental and
basic configurations must first be investigated
and understood. A simple case with one fiber
break from which uniform debonds grow along
the fiber will be investigated parametrically to
shed some light on the interaction between sto-
chastic fiber breakage and debond propagation.
From the results, some qualitative conclusions on
macroscopic fatigue behavior can be drawn.

In fatigue, the progression of any damage,
debonding subsumed, should be described by a
kinetic equation to predict the rate of damage
development. Combined with a failure criterion,
predictions of fatigue life would be possible. A
kinetic relationship for debond growth can and
should be measured experimentally. The growth
rates from the replica measurements of the type
presented in Figure 2 is relevant only to itself, as
the stress state and interfacial toughness vary

Figure 2 Debond propagation from a single fiber
break (accuracy ; 2 mm).
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from fiber to fiber, and along each fiber. The grow-
ing debonds showed an irregular accelerating–
decelerating growth pattern, which could be ex-
plained by a variability in interface properties
along the fibers. This behavior would require a
stochastic growth model. Furthermore, these
measurements were made on the surface of a
composite with a disordered microstructure,
which means that data reduction to a generic
growth law is not straightforward. No kinetic law
for the debond propagation will be considered
here, since the conceived model is not a direct
description of experimental results, but rather
aims for a parametric study to assess influences of
debonding and fiber strength variability on fiber
breakage under fatigue conditions. However, for
future attempts to life predictions a kinetic law is
an exigency.

Since the advent of micro-Raman spectroscopy,
the composite research community has been en-
dowed with a powerful tool to study local stresses
and strains in composites reinforced by fibers
with crystalline or turbostratic morphologies. Ide-
ally, micro-Raman spectroscopy could be used to
investigate in detail the influence of the micro-
structural properties (e.g., debond growth law
and fiber strength distribution) on damage accu-
mulation and failure in composites exhibiting the
observed fatigue micromechanisms. Since these
properties cannot be controlled independently of
other properties, and experiments would be too
costly, we turn toward numerical simulation. A
two-dimensional shear-lag approach will be used
to model the composite stress state. It is best to
first gain understanding of the micromechanical
interactions of fiber ruptures and debond propa-

Figure 3 Growth of shear yield zones (left) and debonds (right) from a set of plane
fiber breaks (fiber diameter ; 5 mm).
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gation in two dimensions before extending the
analysis to three dimensions. Furthermore, early
experimental work has shown similar failure be-
havior in single monolayers and in composites
composed of stacked multiple layers.21,22

NUMERICAL SIMULATION

Shear-Lag Model

A fundamental scenario would be a single fiber
break with propagating debonds between the bro-
ken fiber and the two adjacent fibers (cf. Figure 1).
The behavior of this elementary case, in a general
sense, would reflect the behavior of a more com-
plex damage state with multiple fiber breaks and
growing debonds. Therefore, the case with a sin-
gle fiber break with debonding will be subject to
scrutiny to isolate the debonding process and the
subsequent fiber rupture in a well-defined and
simple configuration. A schematic picture is
shown in Figure 6, and micrographs from exper-
iments on the carbon fiber/epoxy composite are
found in Figure 1. At the outset, there is a single
fiber break at the origin in fiber number 0. The
normalized length of the debonds in all four quad-
rants is a with the fiber break at the origin. Due
to geometric symmetry, the analysis can be re-
duced to only one quadrant, i.e., a quarter-plane
with the fiber break in the corner and a debond
length a. The debonds are in matrix bays number

Figure 4 Growth of debonds from a set of plane fiber
breaks (fiber diameter ; 5 mm).

Figure 5 Schematic illustration of fatigue damage development and failure with
increasing number of load cycles (1 , N0 , N1 , N2 , Nf).
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0 and 21. The stress profile of the fibers adjacent
to the broken fiber will be investigated in some
more detail, since it is generally the next one to be
broken. In order to calculate these stresses, a
shear-lag model can be used. The two-dimen-
sional shear-lag model developed by Beyerlein
and Phoenix8 was chosen to calculate the stress
concentration profile in a fiber adjacent to a single
fiber break. The main features of the model and
the specifics of the present configuration are
briefly outlined here. For details, the reader is
referred to the cited original work.8 As is typical
for most shear-lag models, the fibers are support-
ing only axial loads, and the matrix transfers the
loads in the fibers through shear only. The fibers
are arranged equidistantly in an infinite two-
dimensional array. Poisson contractions and
stresses in the transverse direction are altogether
neglected. One drawback is that the stress-
concentration factors calculated by the Beyerlein–
Phoenix model are independent of the volume
fraction of fibers, but can still be used to analyze
composite monolayers if the interfiber distance is
held constant.23

Alternative models for monolayers have been
developed by Ochiai et al.24 and Wagner and Ei-
tan.11 The former model also accounts for tensile
stress in the matrix, which can be useful for
monolayer experiments with large interfiber dis-
tances. The latter model11 accounts for the vol-
ume fraction of fiber by letting the “masked” part
of intact fibers be approximately inactive to
shear-stress transfer. The model8 presently used
is straightforward, compact, and based on physi-
cal reasoning. It is well suited for polymer-matrix

composites, in particular for carbon fiber–
reinforced plastics. Since the fiber-to-matrix stiff-
ness ratio is very large, the constraints imposed
by the shear-lag assumptions of tensile stresses
in the fibers and shear stresses in the matrix do
not impair the model. This is further emphasized
by the high-volume fraction of fibers in commer-
cial materials. However, in model specimens of
composite monolayers, the stress concentration
and fiber break evolution are known to depend on
the interfiber distance,25,26 and this dependency
ought to be taken into account.

First, the constitutive relation can be ex-
pressed in dimensional units. The distance from
the fiber break plane is x, the fiber spacing is w,
and h is the ply thickness. The constitutive equa-
tion of the axial deformation of the fibers can be
expressed as

pn~x! 5 Ef A
dun~x!

dx (1)

where pn( x) is the axial stress in fiber number n,
Ef is the Young’s modulus of the fibers, A is the
cross-sectional area of a fiber, and un( x) is the
axial displacement in fiber number n. The consti-
tutive law for matrix shear deformation is

tn~x! 5 Gm

un11~x! 2 un~x!

w (2)

where tn( x) is the shear-stress profile in matrix
bay number n, and Gm is the matrix shear mod-
ulus. Combining the two constitutive laws with
the condition of static equilibrium, the following
differential equation presents itself:

Ef A
d2un~x!

dx2

5 2
Gmh

w @un11~x! 2 2un~x! 1 un21~x!# (3)

Second, a normalization would render this differ-
ential equation dimensionless, and the solution
would be independent of the material properties
and the composite geometric parameters. The fi-
ber displacement is assigned to be

Un~j! 5
un~x!

p*Î w
Ef AGmh

(4)

Figure 6 Single fiber break with debonds in an infi-
nite two-dimensional composite.
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where the dimensionless axial coordinate is

j 5
x

ÎEf Aw
Gmh

(5)

and the scaling factor is

p* 5 s*ÎwEf Ah
Gm

(6)

where s* can be arbitrarily chosen to keep the
order of magnitude of the stresses close to unity.
The fiber stress becomes

Pn~j! 5
pn~x!

p* (7)

and the matrix shear stress Tn(j) and shear
strain Gn(j) become identical in the elastic
regime,

Tn~j! 5 Gn~j! 5 Un11~j! 2 Un~j! (8)

To give an idea of the size scale, the value j 5 1
in eq. (5) would correspond to

x 5
pdf

4Vf
Î2~1 1 nm!Ef

Em
(9)

where df is the fiber diameter, Vf is the volume
fraction of fibers, and Em and nm are the Young’s
modulus and Poisson ratio of the matrix, respec-
tively. This assumes a monolayer of cylindrical
fibers spaced by matrix elements with a thickness
equal to the fiber diameter. Since the real com-
posite is three-dimensional and the model is es-
sentially two-dimensional, this relation qualita-
tively translates orders of magnitude and ranks
rather than accurate values. However, j 5 1 com-
pares to x > 50 to 120 mm obtained from eq. (9)
for standard values of the constituent elastic
properties and volume fractions of conventional
polymer matrix composites with long continuous
carbon fibers (input data from ref. 27). For the
present carbon fiber–reinforced epoxy, j 5 1 cor-
responds to x > 60 mm.

The differential eq. (3) can be reexpressed in a
nondimensional form as

d2Un~j!

dj2 1 Un11~j! 2 2Un~j! 1 Un21~j! 5 0 (10)

from which solution the fiber stress can be calcu-
lated,

Pn~j! 5
dUn~j!

dj
(11)

As outlined by Phoenix and coworkers, the de-
termination of the stress state in the fibers can be
reduced to the solution of two basic problems: the
stress redistribution due to (1) an isolated fiber
break and (2) an isolated shear-load couple. The
numerical problem will be confined to a descrip-
tion of only the damaged regions (fiber break and
debonds), from which the stress state in the entire
volume can be formulated. In a finite-element
approach, for example, the determination of the
stress redistribution would demand a discretiza-
tion and solution of the stress state in the entire
volume. A finite element solution is also depen-
dent on the choice of elements and mesh.

For the single fiber break at the origin, the
boundary conditions are that Pn(6`) 5 1 for the
far-field applied load, and P0(0) 5 0 at the fiber
break. Under these conditions, the break influ-
ence functions in the elastic case have been solved
by Hedgepeth and Van Dyke.28 They solved the
isolated break problem analytically by a discrete
Fourier transformation of eq. (10). The stress
along fiber nj at position jj imposed by a unit
compressive stress at the fiber break (which will
later be compensated with a unit applied tensile
stress) was determined to be

L 5 2
1
2 E

0

p

sin
u

2 expS22uju sin
u

2D du (12)

Likewise, the shear stress and strain in matrix
bay nk at position jk was shown to be

Vk 5
sgn jk

4 E
0

p H cos~nk 1 1!u 2 cos nkuJ
3 expS22ujku sin

u

2D du (13)

where sgn( z ) is the signum function, defined as
11 for a positive or zero argument, and 21 for a
negative argument.
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The influence of isolated shear couples has
been deduced by Beyerlein and Phoenix,8 who
used a technique of quadratic influence superpo-
sition to ascribe inelastic properties from yielding
and debonding to the matrix. In the present basic
damage configuration, a simplified formulation
with a set of shear couple point loads will be
employed, but the deduction scheme from the
aforementioned work will be used. In the shear-
couple case, the boundary conditions of unit com-
pressive load for the fiber-break case are ex-
changed by Pn(j) 5 2 1

2 and Pn11(j) 5 1
2, which

correspond to a unit shear couple in matrix bay n
at position j. The stress at the origin, i.e., the
would-be position of the fiber break, due to an
imposed shear load couple in matrix bay nk at
position jk was determined to be

Fk 5
sgn jk

2p E
0

p H cos nku 2 cos~nk 1 1!uJ
3 expS22ujku sin

u

2D du (14)

Correspondingly, the shear stress/strain in ma-
trix bay nl at jl caused by an applied unit shear
couple in bay nk at jk became

Clk 5 2
1
p E

0

p

cos~nl 2 nk!u sin
u

2

3 expS22ujk 2 jlu sin
u

2D du 1 dlk (15)

where dlk is Kronecker’s delta function, which is
defined as dlk 5 1 if l 5 k and 0 otherwise.

The influence functions F and C can be used to
determine the local stresses in the composite im-
posed by debonds. In the debonded region, the
stress-transfer ability of the matrix is reduced,
and limited to frictional shear stresses. In fatigue,
the debonded surfaces are continuously sliding
against one another due to the repeated loading
and unloading. The ensuing wear and attrition of
the crack surface asperities are likely to make the
frictional shear forces decrease continually dur-
ing fatigue. Therefore, it is here assumed that
there are no shear stresses in the debonded re-
gions, T 5 0. Since the measured fatigue debond
lengths reported previously were large compared
with the size scale of the microstructure (i.e., in-
terfiber spacing), the effect from a yielded zone at

the debond crack tip is neglected. Since the ma-
trix material is constrained by stiffer surrounding
fibers, the stress state in the matrix will be tri-
axial, which subdues large-scale yielding even for
ductile polymers.29

Along the debonded strips in matrix bays 21
and 0 in Figure 6, a distribution of N shear cou-
ples are evenly dispersed to counteract the elastic
response from other stress sources. To each shear
couple k is a weight factor Kk,m allotted to account
for its relative contribution. Similarly, the func-
tions L and V are used to determine the local
stresses contributed by the fiber break. The cor-
responding weight factor of the fiber break is de-
noted Kf. Combining the influences from both the
fiber break and the debonded regions, the com-
plete stress state in the composite can be estab-
lished through the determination of the weight
factors. These factors are determined from the
boundary condition of a single fiber breaks with
debonds without stress transfer:

S Kf

Km
D 5 SL F

V CD21S21
0D (16)

where 21 represents the unit compressive load at
the fiber break, 0 is an N-dimensional vector as-
signing zero shear stress in the debonded regions.
The elements L and Kf are scalars since only a
single fiber break is considered. The submatrices
F, V, and C are of dimensions 1 3 N, N 3 1, and
N 3 N, respectively. The weight factor vector Km
is N-dimensional, the elements of which each per-
tain to an individual shear couple. Given the
weight factors from the solution of eq. (16), the
stress profile along any fiber can be calculated.

In like manner to the expressions of L and V in
eqs. (12) and (13), the contribution from the fiber
break and a matrix shear couple onto the stress
profile in the adjacent fiber can be resolved. The
adjacent fiber number 1 along the positive j-axis
is selected, although the same stress profile is
present in the other three quadrants due to sym-
metry. The stress profile in fiber 1 imposed by the
fiber break is then expressed as

l~j! 5 2
1
2 E

0

p

cos u sin
u

2 expS22uju sin
u

2D du

(17)

and the stress profile in the same fiber imposed by
a shear couple in matrix bay nk at position jk is by
translation invariance expressed as
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vk~j! 5 2
sgn~j 2 jk!

2p E
0

p Hcos~nk 2 1!u 2 cos nkuJ
3 expS22uj 2 jku sin

u

2D du (18)

The stress profiles of the adjacent fibers are
P1(uju) 5 P21(uju) due to symmetry. The stress
profile in the selected quadrant is denoted S(j)
5 P1(j) for j $ 0, which also corresponds to the
stress concentration factor since the applied load
is unity. With the stress factors Kf and Km from
eq. (16), the stress-concentration factor is

S~j! 5 1 1 Kfl~j! 1 O
k51

N

Kk,mvk~j! (19)

where the first term 1 represents the influence
from the applied load, which completely relieves
the unit compressive stress at the fiber break.

Fiber Stress Profiles

The Matlab software package was used for the
numerical calculations, where 10 to 20 shear cou-
ples were uniformly distributed along each of the
four debonded lengths; uju # a, where the debond
length a was varied between 0 and 2.25. In Figure
7, the stress-concentration factor in the neighbor-
ing fiber is plotted with respect to the distance to
the fiber break plane for various debond lengths.
Experimental investigations by means of micro-
Raman spectroscopy support the calculated stress
concentration in the adjacent fiber.30–32 The elas-
tic case with no debonding gives the highest
stress concentration in the adjacent fiber with a
value of S 5 1.3334. The stress-concentration fac-
tors for full elastic and finite-element solutions in
three dimensions is generically the same, but
takes smaller maximum values than the preced-
ing two-dimensional shear-lag solution, since
more intact neighboring fibers can share the load
released by the broken fiber.33 It is doubtful if the
elastic case with no debonds exists, since dynamic
effects from sudden release of stored elastic en-
ergy when the fiber breaks should cause some
additional damage besides the fiber break itself.
The fatigue propagation of the debonds may
therefore start at a some length larger than zero,
a0 . 0. As the debond grows, the peak value
decreases and moves away from the plane of the
fiber break, and roughly follows the position of the

debond crack tip. This behavior is in concert with
other models and experimental measurements.
The shapes of the stress profiles for different
debond lengths are not unlike those obtained by
Nedele and Wisnom34 in an axisymemtric finite-
element investigation. Lagoudas et al.35 made a
numerical investigation of the stress profiles near
broken fibers using a shear-lag model with a vis-
coelastic creeping matrix, and obtained a broad-
ening of the stress profiles as the viscoelastic re-
laxation of the matrix shear stresses progressed.
Bennett and Young36 have presented experimen-
tal data on moving peak axial fiber stresses with
growing debonds by micro-Raman spectroscopy.
With the same technique, Amer and Schadler37

observed lower stress concentrations and wider
distributions for a composite prone to debonding
(fibers aged in boiling water) compared to a com-
posite with relatively strong interface (pristine
fibers). The peak value of the stress concentration
factor in Figure 7 evens out, and seems result in
a small overload, S . 1, which is presented in
Figure 8.

The fiber break and its debonds give rise to a
notably nonuniform stress profile along the adja-
cent fiber. As the debond propagates, the stress
profile changes, which leads to relaxation of some
of the previously overloaded parts of the fiber,
whereas other parts close to the debond crack tip
become more overloaded than heretofore. This
continuous change in stress profile may eventu-
ally lead to rupture of the fiber at a point with
an unprecedented overload. Increasing debond
lengths will definitely result in an increasing
probability of failure of a neighboring fiber.

Figure 7 Stress concentration factor for different
debond lengths.

466 GAMSTEDT



Probabilities of Fiber Failure

The statistical failure of a fiber adjacent to the
broken and debonded fiber will be analyzed in
particular. The fibers considered here are carbon
fibers. They are known to have a strength that
obeys reasonably well the Weibull distribution
with the cumulative probability of failure

Pf~Sf! 5 1 2 expH2LSSf

S0
DbJ (20)

where b is the shape parameter, S0 is the scale
parameter for unit fiber length (i.e., L 5 1). The
shape parameter can be interpreted physically as
a measure of the flaw size distribution of the
fiber.38 It should be mentioned that linear scaling
with L may not prove to be adequate for compos-
ite fibers over a large length range.39,40 When the
weakest link assumptions do not hold, the depen-
dency on length in eq. (20) can be formulated as a
power law with Lg in lieu of L. A reason for this
behavior can, for instance, be a variation in fiber
cross-sectional area along its length. Typical val-
ues for the exponent g are 0.6 for AS4 carbon
fibers41 and for aramid fibers,42 and 0.9 for HS
Celion 1000 carbon fibers,40 and a range from 0.38
to 0.67 for various carbon fibers of Soviet origin.39

Scaling with g 5 1 has been found to be quite
appropriate with gage lengths within the same
order of magnitude.43 This linear behavior with g
5 1 as in eq. (20) will be used here.

The associated expectancy or mean value of the
strength of a fiber segment with length L is

S# f 5

S0GS1 1
1
bD

L1/b (21)

where G(z) is the Gamma function.
In order to investigate the influence of scatter

in fiber strength on the rupture of the fiber adja-
cent to the originally broken and debonded fiber,
the mean strength S# f was kept constant for a
number of different shape parameters b. The se-
lected values are b 5 2, 6, and 10, which repre-
sent experimentally obtained values for carbon
and glass fibers.27 By choosing the stress normal-
ization parameter s* in eq. (6) so that S0 5 1 for
the middle value of the shape parameter b 5 6,
the mean strength is S# f 5 G(1 1 1

6) for unit gage
length. The scale parameter for other shape pa-
rameters can then be calculated with

S0~b! 5
S# f

GS1 1
1
bD

(22)

for L 5 1. In this way, a parametric study of the
influence of scatter in fiber strength on the break-
age of the adjacent fiber can be undertaken with-
out altering the mean fiber strength.

The investigated fiber segment can be parti-
tioned into subsegments of length d. The proba-
bility of survival of such a subsegment is

Ps~d, S! 5 expH2dF S

S0~b!G
bJ (23)

for a constant stress S. By use of the weakest link
concept, the probability of failure of a fiber of
length j0 5 nd subjected to a nonuniform stress
along its length can be estimated, if the fiber is
divided into n pieces of length d. The gage length
is here chosen to be j0 5 6, since the debonded
stress profiles seem to be fairly close to the as-
ymptotic value of the elastic stress profile at this
point (cf. Figure 7). The probability of failure is

Pf~S~a, j!! 5 1 2 lim
n3`

P
i50

n

expH 2
j0

n

3 FS~a, ij0/n!

S0~b! GbJ (24)

which yields

Figure 8 Maximum stress concentration factor as a
function of debond length.
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Pf~S~a, j!! 5 1 2 expH 2 E
0

j0 FS~a, j!

S0~b! Gb

djJ ~25!

where S(a, j) is the stress concentration at j in
the fiber adjacent to the broken fiber for a unit
applied load, and with a varying debond length a.

It should be noted that even if only the proba-
bility of failure of a gage length of one fiber (0 # j
# j0 in fiber number 1) is analyzed, the cumula-
tive probability of failure in any of the four quad-
rants can be determined as

Pf
tot~S~a,j!! 5 1 2 @1 2 Pf (S(a,j))]4 (26)

because of symmetry. For simplicity, we stick to
only one fiber quadrant.

As the debond grows during fatigue, the stress
profile along the considered fiber changes
throughout the test. The fiber is subjected to a
continuously changing nonmonotonic proof test.
In an elastic material, it is the unprecedented
stress at each given point that is critical, and that
may cause failure. The envelope or maximum
stress profile from the point where there was no
debonding up to a debond length a is

Se~a, j! 5 max
0#a#a

S~a, j!. (27)

The probability of failure with respect to
debond length is presented in a Weibull plot in
Figure 9 for a unit applied load, and shape pa-
rameters b 5 2, 6, and 10. The history and spa-
tially dependent stress profile envelope Se in eq.
(27) was used to determine the probability of fail-
ure prior to a certain given debond extent. For all
strength distributions, the probability of failure
increases with increasing debond lengths. This is
a necessary condition for a progressive-damage
mechanism with successive fiber failures. Even
though debonding is not a critical damage mech-
anism per se, it has an important influence on
fiber breakage. Since the fibers constitute the
main load-carrying members in polymer-matrix
composites with continuous fibers, the failure of
the composite can be caused only by failure of its
fibers.

The probability of failure is significantly larger
for higher values of b. With a narrower distribu-
tion of fiber strength, the composite shows higher
sensitivity to local stress concentrations. The
notch-insensitivity of composites with fibers with

a wide strength distribution has been investi-
gated by Monte Carlo simulation by Beyerlein
and Phoenix.44 The simulations presumed length-
invariant strength and no debonding. The flaw
tolerance for small values of b was particularly
large for small notches or cracks. Wagner et al.45

studied fiber interactions in a composite mono-
layer with Kevlar fibers using micro-Raman spec-
troscopy, and found planar failure of fibers, de-
spite a very small stress concentration from bro-
ken fibers. This can be explained by the relatively
uniform strength of Kevlar fibers (small scatter
compared with, e.g. carbon fibers). In contrast,
fiber breaks are more spatially distributed in a
composite monolayer with brittle carbon fibers
possessing a considerably wider strength distri-
bution, unless the fibers are brought to a close
vicinity to one another so that strong interaction
occurs.26 A fiber type with a larger variability in
strength provides a toughening effect due to its
relative insensitivity to high overloads. This ef-
fect can be further enhanced by alteration of the
path of progression of fiber fractures up to insta-
bility, as discussed later. This toughness can be
interpreted as fracture energy, which is the sum
of the energy consumed by all fiber breaks and
the total amount of debond growth. Therefore,
a composite with a wider distribution of fiber
strength, hence more fiber breaks, and a propen-
sity to debonding would render a material with a
higher fracture energy. Such a material would be
able to tolerate more damage, since it could accu-
mulate more fiber breaks and debonds without
failure of the composite.

Figure 9 Weibull plot of the probability of fiber fail-
ure with respect to debond length and fiber strength
variability.
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As the debonds grow, and the stress profile in
the neighboring fiber changes, so will the expect-
ancy of the distance from the original fiber break
to the secondary break j# f. With no debond, the
stress concentration is relatively localized to the
plane of the original fiber break, but as the
debond propagates, the stress-concentration pro-
file becomes more distributed along the j-axis,
and rupture is expected further away from the
first break. With a narrow distribution of fiber
strength, planar fiber breakage would be more
likely. To investigate this supposition, a Monte
Carlo simulation was undertaken. Through inver-
sion of eq. (20), the strength of fiber segment i of
length d is

Si 5 S0~b!S 2
ln Zi

d D 1/b

(28)

where Zi is a generated random variable from the
uniform distribution between 0 and 1. Each of the
100 assigned fiber elements was then compared
with the local stress, and the position of the weak-
est element with lowest positive strength to stress
ratio was registered for 100,000 iterations for
each stress profile and shape parameter. To iso-
late the effect of the damage inflicted stress con-
centration from the far-field applied stress, the
local stress was somewhat unrigorously defined
by subtraction of the applied stress from the
present maximum stress profile, i.e., Se(a, j) 2 1.
In this manner, only fiber failures caused by the
stress concentration from the present damage
were generated. The mean value of the fiber
break distance j# f was thus calculated for each
debond length and fiber strength distribution.
The simulation was repeated a number of times,
and the maximum test-to-test difference was
found to be no greater than 2%. The results of the
simulations are presented in Figure 10. As the
debonds grow, the mean distance to the second
fiber break increases. With debonding, the over-
load on the adjacent fiber becomes more spatially
distributed and fiber breaks tend to occur further
away from the previous break. A more jagged and
tortuous path between fiber breaks would then be
expected for composites that are prone to debond-
ing. In carbon fiber/epoxy, more planar fracture
surfaces were observed in fatigue of composites
with a strong interface.46 This behavior also
seems to hold for other kinds of unidirectional
composite materials. Glass fiber–reinforced poly-
propylene with differing interfacial properties

has shown a more straggling fracture appearance
for the weaker interface after fatigue failure,47

which can be explained by the abundant debond-
ing that occurred in the weak interface materi-
al.48 This pattern manifests itself even for certain
metal-matrix composites. Naik et al.49 observed
distributed nonplanar fiber breaks for titanium
matrix composites with weak interfaces, whereas
those with stronger interfaces showed localized
and planar fiber breakage. In short, a more un-
even, broomlike failure mode of the composite
specimens are prone to debonding, whereas com-
posites with stronger interfaces, e.g. carbon fiber/
epoxy, display a more planar fracture surface (see
schematic picture in Figure 11).

Figure 10 also shows that larger fiber strength
variability, i.e., smaller values of b, leads to
longer mean distance between fiber breaks. With
a wider distribution in strength, the composite
becomes less notch sensitive, i.e., less susceptible
to failure at local stress concentrations. Scanning
electron microscopy of fracture surfaces of unidi-
rectional carbon fiber/epoxy laminates have indi-
cated that scatter in fiber strength together with
debond propagation are responsible for a more
winding and distributed crack propagation.50 In
the extreme case where the fibers have a uniform
constant strength (b 3 `), the fibers will always
fail in the same plane as the original fiber break,
if it would fail at all, resulting in a planar fracture
surface. The influence of growth of debonds would
not result in any fatigue degradation, but only
make already existing fiber breaks link up. In
contrast, a large variability in fiber strength re-

Figure 10 Mean distance to secondary fiber break
with respect to debond length.
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sults in longer average distances between fiber
breaks, which means a more uneven and zigzag-
ging linkup between breaks. This is the same
feature that arises for debonding, and at low fa-
tigue amplitudes. At high-cycle fatigue at low am-
plitudes, the debonds have time to grow to a con-
siderable extent, which further affects fiber
breakage. Schematic pictures of this relation are
presented in Figure 12. How damage propagates
from a notch or a flaw depends on the stochastic
failure of fibers, which in turn depends on the
nature of the stress distribution caused by grow-
ing debonds. Figure 12(a) illustrates distributed
fiber breakage linked by propagating debonds.
This scenario is prevalent for composites that are
prone to debonding, have wide distributions in
fiber strength, and are subjected to high-cycle

fatigue. The other scenario is the planar brittle
type of fracture in Figure 12(b), which prevails in
materials that are resistant to debond growth,
especially for low-cycle fatigue. A low variability
in fiber strength also favors this type of behavior.

The variability in the applied stress to cause
failure in the adjacent fiber will vary depending
on the stress profile and the distribution of fiber
strength. A measure of the variability in applied
stress that has resulted in fiber failure is the
standard deviation, which is the square root of
the variance, s2 5 ^Sf

2& 2 ^Sf&
2. The standard

deviation in fiber strength is given by

s 5

ÎGS1 1
2
bD 2 G2S1 1

1
bD

SE
0

j0 FSe~a, j!

S0~b! Gb

djD 1/b (29)

and is plotted in Figure 13. Naturally, the stan-
dard deviation of failure of the adjacent fiber is
larger for fibers with larger scatter in strength,
irrespective of the applied stress profile. More
noteworthy is the trend that the variation in fiber
strength decreases as the debonds grow. This is
because Se(a, j) becomes more distributed along j
for larger a, which can be seen in Figure 7. The
stress concentration becomes more evenly shared
along the fiber, and thus turns the event of fiber
failure less susceptible to local variations in fiber
strength.

Returning to Figure 12(a), where the more
widespread state of damage with ample stress
soothing debonds result in a more homogeneous
stress field, further damage propagation through

Figure 11 Fracture appearance: (a) brittle planar
failure; (b) brushlike sprawling failure.

Figure 12 Illustration of damage development de-
pending on scatter in fiber strength, debonding, and
load level.
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fiber breakage would be more predictable with
less scatter. In Figure 12(b), the damage is more
localized with higher local stress concentrations.
This implies larger variations in further fiber
breakage and crack propagation. This trend has
been observed by Beyerlein and Phoenix44 in sim-
ulation of fracture of a one-dimensional compos-
ite, where large notch lengths with more over-
stressed fibers resulted in a relatively lower scat-
ter in composite strength. Fernando et al.51

measured less scatter in fatigue life for carbon/
aramid fiber composite hybrids than in the neat
carbon fiber–reinforced plastic. The incorporation
of the low modulus aramid fibers with high exten-
sibility provides a mechanism of deflecting and
arresting cracks, which leads to more damage-
tolerant material able to accumulate more dis-
tributed fiber breaks,52 and hence a more uniform
and delocalized stress state. Moreover, carbon fi-
ber/PEEK has shown less scatter in strength as
well as in fatigue life than did carbon fiber/epoxy.9

In carbon fiber/PEEK, the fiber breaks were dis-
tributed by abundant debonding, whereas the fi-
ber breaks with substantially less debonds were
highly localized for the carbon fiber/epoxy mate-
rial. Kim and Hartness53 have made corrobora-
tory observations with more fiber breaks in car-
bon fiber/PEEK compared to carbon fiber/epoxy in
fatigue. Also in fatigue of metal matrix compos-
ites, the crack paths from notches have been ob-
served as schematically shown in Figure 12(b) for
the as-received composite, and crack paths as in
Figure 12(a) for the heat-treated composite with
oxidized and degraded interface, which led to en-

hanced debonding.20 This behavior has been fur-
ther substantiated by numerical simulations,
where high interfacial shear strength and small
variability in fiber strength led to brittle fracture
with localized planar damage.54

The distribution of damage by debonding
makes the damage propagation more determinis-
tic and reduces the scatter in strength and life-
time. An analogy can be made by considering a
brittle ceramic where failure is controlled by the
largest flaw, and therefore shows a large scatter
in strength. In contrast to this, a ductile polymer
material undergoes global yielding under defor-
mation, and the yield stress shows very little vari-
ation from one test sample to another. Local load
sharing or localization of damage, in general,
leads to wide scatter in strength and fatigue life,
but global load sharing or distributed damage
accumulation results in a narrow scatter in
strength and life.

In this context, a qualitative reasoning indi-
cates that there is an optimum in static and fa-
tigue properties with respect to interfacial
debonding and scatter in fiber strength. First,
with a high rate of debond propagation, the stress
transfer between fibers becomes distributed along
the load-carrying fibers. In the extreme case, the
composite will act as a loose bundle with no stress
transfer. Fatigue sensitivity is the disadvantage
for rapid debond propagation. With no or little
debonding, the composite is less sensitive to fa-
tigue.9,48 However, it is notch-sensitive with
trade-offs in static strength due to its brittleness.
Second, a wide distribution of fiber strength al-
lows spatially distributed fiber breaks in the com-
posite, which renders it more damage tolerant.
However, the coalescence by debonding or yield-
ing and subsequent failure are prominent in fa-
tigue. The deterministic case with no distribution
in fiber strength would result in planar crack
growth as previously discussed. This has a dete-
riorating effect on the static properties, since
stronger fiber segments may not be present at the
crack tip to alter the crack path. Wagner and
Steenbakkers55 investigated damage propagation
in composite monolayers and found aligned pla-
nar fiber breaks with aramid fibers that possess a
relatively narrow distribution in strength, whereas
the E-glass composite with its wide strength dis-
tribution showed multiply distributed fiber
breaks. It should be appreciated that fiber break-
age and debonding are mutually influencing
mechanisms, and cannot be separated as their
synergistic growth leads to final failure.

Figure 13 Standard deviation of strength with re-
spect to debond length.
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In the fatigue case, this synergism would lead
to a more pronounced cycle dependency with in-
creasing debond rates. The schematic illustration
in Figure 14 portrays the influence of increased
debond rate for a fix fiber strength distribution on
the fatigue sensitivity and scatter in life. With
increased debonding, the scatter would be miti-
gated because of more uniform and spatially dis-
tributed states of stress and damage. The pro-
gressiveness of debonding leads to a sloping fa-
tigue life curve. This slope vanishes when
debonding is fully suppressed, which is the case
for some high modulus carbon fiber/epoxies,
where the static strain to failure of the fibers is
lower than the strain level of initiation of matrix
or interfacial cracking.10 Furthermore, the static
strength is likely to be improved to some degree
for moderate debonding since the debonds relax
the stress concentration in the neighboring intact
fibers and redistribute the load sharing to a larger
volume of fibers.56 For excessive debonding, the
strength would decrease, and the composite
would show bundle behavior and coalescence of
fiber breaks. Only the case with a debonding that
ranges from zero to moderate (for optimal static
strength) is considered here. The fatigue limit
would decrease somewhat since the limit load-
carrying capacity decreases with increasing limit
amount of debonds. This is true if there exists an
arrest mechanism that stops further debond
growth after a certain number of cycles (see, e.g.,
Figure 2). In the case of a fully debonded compos-
ite, the strain to failure is that of a corresponding
loose fiber, which constitutes a lower bound in
composites where global load-sharing conditions
prevail.57 These effects of debonding on fatigue
life properties are further enhanced by a wider
distribution of the fiber strength, since this would

give rise to additional distributed breaks from
which debonds can emanate.

APPROACHES TO FATIGUE LIFE
PREDICTION

The lion’s share of the fatigue life prediction
schemes presented in the scientific literature con-
cerns degradation of a macroscopic property, i.e.,
residual stiffness or strength, until final failure
occurs. A fatigue-damage model based on the mi-
croscopic mechanisms would require less-costly
testing, give better understanding, and provide
indications for improvements of material proper-
ties. The models presented in this work are but a
small step toward the ultimate goal of fatigue life
prediction. It should be emphasized that a mech-
anism-based fatigue model demands extensive
and precise experimental work to identify and
quantify the operative fatigue-damage mecha-
nisms, from which kinetic relationships intrinsic
to the given composite material could be deduced.
For life prediction, the kinetic equation must be
complemented with a failure criterion. In the case
of a shear-lag model, failure takes place when the
fibers start breaking unstably.44 This can be pre-
dicted directly by the model itself since the stress
at all locations is given by the solution.

Micromechanical models for damage accumu-
lation and life prediction in creep (sometimes
termed “static fatigue”) have been more fre-
quently reported than micromechanical models
for cyclic fatigue. Creep is also of great practical
importance in durability of structural materials.
Typically, a power law is applied to describe the
viscoelastic constitutive equation of one of the
constituents.42,43 Creep is, like fatigue, a time-
dependent process that results in irreversible
damage or deformation, and may finally lead to
failure. The mechanisms responsible for creep
may very well be similar to those active in fatigue,
although they propagate at different rates. Mac-
roscopically, the applied load can be fluctuating
(fatigue) or constant (creep), which microscopi-
cally gives rise to similar sets of basic damage
mechanisms such as matrix yielding, debond
growth, successive fiber breakage, etc. Creep
models for life predictions have been developed
for global load sharing,57 in which distributed
fiber breaks are unloaded equally by the all-sur-
viving fiber in the same plane. Stress-life curves
for creep in metal matrix composites have been
successfully predicted with these models. Since

Figure 14 Influence of debond rate on fatigue sensi-
tivity and scatter.
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the rate of creep or debond growth in the matrix
can be expressed arbitrarily, the models can be
reformulated for a fatigue scenario. It is doubtful,
though, if the approach of global load sharing can
be used for polymer matrix composites, since the
assumption of global load sharing is likely to be
too crude.

In polymer matrix composites, the ratio be-
tween the maximum shear stress in the matrix to
the characteristic fiber strength is relatively
large, and local stress concentration close to fiber
breaks will therefore be high compared to metal
or ceramic matrix composites. A local load-shar-
ing approach would therefore be more suitable for
polymer matrix composites. Local load-sharing
models for damage accumulation and life predic-
tion become more detailed than those for global
load sharing, since the individual damage sites
have to be considered, as well as cluster formation
and coalescence. A promising technique applica-
ble to polymer matrix composites has been pre-
sented by Curtin and Takeda,58 in which succes-
sive failures of interacting fiber segments with
spatially dependent load transfer can be modeled
in a three-dimensional lattice.

The present work has qualitatively highlighted
relations between fiber breakage and debonding,
and their influence on further damage growth in a
fatigue framework. In a quantitative microme-
chanical model for fatigue life predictions of real
polymer matrix composites, requisite features
would be a three-dimensional description with
local load sharing. The fiber strength distribution
and the debond rate would be input parameters,
both of which should be experimentally deter-
mined. Besides the potential to predict fatigue life
at constant and variable amplitude loading, an
accurate model would also allow for microstruc-
tural design for desired fatigue life and static
properties.

CONCLUSIONS

There is ample experimental evidence that
debonding is an active fatigue damage mecha-
nism in unidirectional 0° carbon fiber–reinforced
epoxy. It is subcritical in the sense that it does not
directly result in final failure. Fibers must be
broken to cause ultimate separation. However,
the growing debonds redistribute the load in the
neighboring fibers, and eventually a weak seg-
ment in one of these fibers may fail when it is
overloaded. Subsequently, further debonding and

fiber failures can ensue, until ultimate failure
occurs. After experimental identification of these
mechanisms by a surface replication technique, a
parametric model was used to investigate debond
propagation and its influence on stochastic fiber
breakage. A shear lag model has been adapted for
a single broken fiber with propagating debonds.8

This constitutes a simple case to illustrate a fun-
damental type of damage propagation in fatigue
of composite with weak interfaces. From damage
influence functions, the stress in the fiber adja-
cent to the broken fiber was calculated with re-
spect to the length of the debonds. A peak stress
concentration factor propagates along with the
debond at its tip, which results in a monotonically
increasing probability of fiber failure. Also,
debonding makes uneven and jagged crack prop-
agation more likely, in which case the damage
becomes more spatially distributed with a more
homogeneous stress field. A large variability in
fiber strength has basically the same break-dis-
tributing effect. With a more homogeneous stress
distribution, the variability in strength decreases,
which can explain the smaller scatter in fatigue
life of composites that show a more homogeneous
distribution of damage.
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Polymer Engineering at Luleå University of Technol-
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support from the Swedish Research Council for Engi-
neering Sciences (TFR) are gratefully acknowledged.
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